Symmetry

Crystal systems

A collection of point groups that in common give caracteristic symmetry operations

Table 1.1 The seven crystal systems

Crystal system	Unit cell shape†	1.1	Essential symmetry	Allowed lattices	
Cubic	$a = b = c, \alpha = \beta = \gamma = 90^{\circ}$	1.1	Four threefold axes	P, F, I	
Tetragonal	$a = b \neq c, \alpha = \beta = \gamma = 90^{\circ}$		One fourfold axis	P, I	
Orthorhombic	$a \neq b \neq c, \alpha = \beta = \gamma = 90^{\circ}$		Three twofold axes or mirror planes	P, F, I, A (B or C)	
Hexagonal	$a = b \neq c, \alpha = \beta = 90^{\circ}, \gamma = 1$	20°	One sixfold axis	Р	
Trigonal (a)	$a = b \neq c, \alpha = \beta = 90^{\circ}, \gamma = 1$	20°	One threefold axis	Р	
(b)	$a = b = c, \alpha = \beta = \gamma \neq 90^{\circ}$		One threefold axis	R	
Monoclinic*	$a \neq b \neq c, \alpha = \gamma = 90^{\circ}, \beta \neq 9$	0°	One twofold axis or mirror plane	P, C	
Triclinic	$a \neq b \neq c, \alpha \neq \beta \neq \gamma \neq 90^{\circ}$		None	Р	

* Two settings of the monoclinic cell are used in the literature, the most commonly used one given here, with b as the unique axis and the other with c defined as the unique axis: $a \neq b \neq c$, $\alpha = \beta = 90^{\circ}$, $\gamma \neq 90^{\circ}$.

unique axis: $a \neq b \neq c$, $\alpha = \beta = 90^\circ$, $\gamma \neq 90^\circ$, † The symbol \neq means 'not necessarily equal to'. Sometimes, crystals possess *pseudo-symmetry*. For example, a unit cell may be geometrically cubic but not possess the essential symmetry elements for cubic symmetry; the true symmetry is then lower, perhaps tetragonal.

The unit cell is chosen so that the mention symmetry elements are easily observed. By describing the symmetry of the unitcell the symmetry of the condensed material is described fully.

Bravais Lattices

Inversionaxis \overline{n}

Screw axis, X_v

Pointgroups

•A chracteristic collection of symmetry elements

•The symmetry elements has origo as common point

•Symmetry elements and point group symbol: Two schemes:

Schönflies Hermann Mauguin

σ, C_n *m*, *n*

•Illustrated in form of stereographic projection

Stereographic projection

- •The crystal is surrounded by a sphere
- •We are interested in the projected surface in a xy-plane through the sphere
- •The projected point is determined by the intersection of a connection line from the point of interrest to the pole of the opposite side.

•The two halves of the spheres are noted by assigning + and – and to use filled and open sumbols

Triclin system

1 and $\overline{1}$ does not imply any restrictions for a,b,c or α,β,γ

Point group with elements: $\begin{array}{c} 1 \\ \overline{1} \\ I,i \end{array}$

If a 2-fold axis is added, then the system becomes:

Monoclinic system

with the symmetry operations 2 (C₂) or $\overline{2} \equiv m (\sigma_h)$

2 Ι, C₂ m Ι, σ_h

Presence of further 2 or m is a criteria for an orthorombic system

What about m normal to 2?

It does not change the criteria for a,b,c or α,β,γ and is hence possible.

$$\{\mathbf{m}[001]\}\{2[001]\} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \{\overline{1}\}$$

2/m sentrosymmetric, with the operations: $\mathrm{I},\!\mathrm{C}_2,\!\sigma_h\!,\!i$

Point groups:

A crystallographic pointgroup is a selection of symmetry elements that can operate on a three dimensional lattice. This is only met by 32 pointgroups.

Crvstal svstem	Crvstallogr
Triklinic	11
Monoklininc	2, m, 2/m
Orthorombic	222, mm2,
Tetragonal	<u>4,</u> -4, 4/m,
Trigonal	<u>3,</u> -3, <u>32</u> , 3
Hexagonal	<u>6</u> , -6, 6/m,
Cubic	23, 2/m-3,

Crystallographic point group, full symbols 1,-1 2, m, 2/m 222, mm2, 2/m2/m2/m 4, -4, 4/m, 422, 4mm, -42m, 4/m2/m2/m 3, -3, 32, 3m, -32/m 6, -6, 6/m, <u>622</u>, 6mm, -6m2, 6/m2/m2/m 23, 2/m-3, 432, -43m, 4/m-32/m

Of these are: 11 centrosymmetric 21 non-centrosymmetric 10 polar 11 <u>enantiomorphic (chiral)</u>

Point groups:

A crystallographic pointgroup is a selection of symmetry elements that can operate on a three dimensional lattice. This is only met by 32 pointgroups.

Crystal system

m Crystallographic point group

Triklinic1,-1Monoklininc2, mOrthorombic222,Tetragonal4, -4Trigonal3, -3Hexagonal6, -6Cubic23, r

2, m, 2/m 222, mm2, mmm 4, -4, 4/m, 422, 4mm, -42m, 4/mmm 3, -3, 32, 3m, -3m 6, -6, 6/m, 622, 6mm, -6m2, 6/mmm 23, m-3, 432, -43m, m-3m

Of these are: 11 centrosymmetric 21 non-centrosymmetric 10 polar 11 enantiomorphic (chiral)

There are 230 space-groups!

Space group symbo	: Xefg				
Bravais P (R) F, I A,B,C	lattice:	Symmetry for characteristic directions (dependent on crystal system)			
Symmetry operations Inversion Rotation Mirror Rotation-inve	without trans -1,1 n m rsion n	lation:			
Symmorfe space groups (73 groups)					
Symmetry operations v Screw-axis Glideplane	<mark>∕ith</mark> translatio n _m , a,b,c,n,d	n: 2 ₁ ,6 ₃ , etc.			
Non-symmorfe space groups (157 groups)					

Symmetry planes	Symbol	Translation
Mirror	m	none
Axial glide	a b c	a/2 b/2 c/2
Diagonal glide	n	(a+b)/2, (b+c)/2, (a+c)/2 (a+b+c)/2 for cubic and tetragonal only
Diamond glide	d	(a±b)/4, (b±c)/4, (a±c)/4 (a±b±c)/4 for cubic and tetragonal only

II [2]14/m

 ρ (interstitial B) > ρ (perfect) > ρ (vacant space A)

